WELCOME

Warm Up

1. Find each measure:

Find the measure in $\odot T$.
3. $m \overparen{R S}$

4.	
$R P S$	
5. $m \overparen{P Q R}$
6. $m \overparen{Q S}$
7. $m \overparen{Q S P}$
8. $m \angle Q T R$

2. Solve the quadratic:

Chapter 9 Section 4 Chords In Circles

9.4 Learning Target

Calculating Segments and Arc Lengths using Chord and Diameter Theorems in Circles.

Diameter Chord Theorem

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

If \perp then $\overline{B D} \cong \overline{D C}$ and $\overparen{B A} \cong \widehat{A C}$

Equidistant Chord Theorem

In the same circle, or in congruent circles, two chords are \cong iff they are equidistant from the center.

Solve for x
45.

46.

Congruent Arcs and Chords

In the same circle, or in \cong circles, two minor arcs are congruent iff their corresponding chords are \cong

$\widehat{\mathrm{AB}} \cong \overparen{\mathrm{CA}}$ iff $\overline{A B} \cong \overline{C A}$

Solve for \mathbf{x}

Chord Diameter Theorem

If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

$\overline{X Z}$ is the Diameter

